When GMOs came onto the market in 1996, the conventional wisdom was that these new plants and foods were fundamentally different from more traditional varieties because each contained a “foreign” gene—one not found “naturally” in that plant, and often from an unrelated species. That’s what scientists call transgenics. It’s also what spurred the invention of the derogatory activist term, “Frankenfood,” which is often accompanied by scare pictures caricaturing the process. Anti-GMO activists claim the moving of genes between species could upset the balance of nature or cause new allergens.
Scientists see it differently. In most ways, breeding using genetic engineering is fundamentally similar to those used for thousands of years—by nature and humans. In selective breeding, the plants’ natural ways of reproduction are turned to human ends. Before we knew what DNA was, humans were moving the genes we found useful into our best crops. For more than 80 years, breeders have routinely used radiation or chemicals on seeds to scramble plant DNA to generate new traits, a process known as mutagenesis. “Wide cross” hybridization has given rise to plants that do not exist in nature. All of these are unregulated and foods grown from these plants can be sold as organic.
Since the development of the science of genetics, we have become even more precise in manipulating the DNA of plants to refine the breeding process. More recently, scientists pioneered gene editing and forms of cisgenesis —making genetic changes using the plant’s own genes or genes from the same species. Although cisgenesis does not involve the transfer of foreign genes, critics of biotechnology claim it still violates the ‘natural order’ and poses unknown risks, and are demanding gene edited crops be regulated as GMOs.
Modern forms of genetic engineering, most scientists say, are a more precise way to add desirable or subtract undesirable traits. Throughout history, breeders have manipulated plant development through sexual crossing. Almost all the foods we eat today are not “natural”—they have been modified, or in some cases created from almost inedible wild plants.
All three approaches bring with them a certain randomness. Critics of genetic engineering spend a lot of time focused on the potential for unintended consequences of humans redesigning the genetic material of a particular plant. But this is characteristic of virtually every technique used by breeders, whether conventional or genetic. There have been instances, for example of conventional breeding resulting in crops that are toxic to humans. Those include the Lenape potato and the organic “killer zucchini”.