The creation, described in the journal Science, consists of lipid bilayers separating droplets of water -- rather like cell membranes, whose double layers allow the body’s cells to mesh with their watery environments while still protecting their contents. “The great thing about these droplets is that they use pretty much exclusively biological materials,” said study co-author and University of Oxford researcher Gabriel Villar, making them ideal for medical uses.But doing this by hand was a laborious process. So Villar built a 3-D printer that would use a micropipette to squeeze out droplets in exact orders, speeding up the process. They created networks of up to 35,000 droplets. And in the process, they began to look at the material they were creating differently.
“What we didn’t really expect was that once we could print these droplets out and eject them en masse and assemble them into different geometries, the collection of droplets behaved not just as a loose aggregate of objects but really as a cohesive material, and that kind of changed our thinking throughout the work,” Villar said.
Any potential medical uses were far out on the horizon, Villar said -- but the faux-tissue could be used to graft onto organs to replace damaged parts, employed as scaffolding on which to grow more cells, or could be inserted into the body to release medication at given times, in certain spots, with specific triggers.