Neuroscientists funded by the National Institutes of Health (NIH) have developed an ultrathin, minimally invasive device for controlling brain cells with drugs and light, and demonstrated that the device allows for wireless brain control by remotely drugging and controlling mice.
Optogeneticsis a relatively new neuroscience approach that combines genetics with the physics of light. It uses light to monitor and control neurons that have been genetically modified to sense and respond to light. Optogenetics allows neuroscientists to control and monitor the activities of individual neurons in living tissue.
"This is the kind of revolutionary tool development that neuroscientists need to map out brain circuit activity," said James Gnadt, Ph.D., program director at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS).
The scientists used soft materials and semi-conductor computer chip manufacturing techniques to create a brain implant a tenth the width of a human hair, that can wirelessly control neurons with lights and drugs. The implant has room for up to four drugs and has four microscale inorganic light-emitting diodes.